Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(11): e0294600, 2023.
Article in English | MEDLINE | ID: mdl-37976271

ABSTRACT

Many marine mammals exhibit diel trends in vocal production, which can provide information on habitat use and behavioral activity. In Belize, Antillean manatees (Trichechus manatus manatus) commonly inhabit small depressions in the substrate or deep-water coves known as "resting holes". Determining if manatees exhibit diel temporal trends in their call production rate and call types between microhabitats can provide insights into their diurnal and nocturnal activity patterns. Here, we investigate the diel vocalization patterns of wild Antillean manatees in two adjacent resting holes off of St. George's Caye, Belize. Recordings of manatees were made using a bottom-mounted hydrophone located near a reef barrier reef for nine days in July of 2017 and ten days in January of 2018. To explore if and how manatee acoustic activity differs between sites, we compared the number of calls per hour, the number of manatee positive hours, the number of tonal and atonal sounds, and the number of boats detected across sites. A total of 370 hours of acoustic recordings were analyzed resulting in the detection of 3,262 calls. There were no significant differences in the number of manatee calls produced per hour between sites. The average number of calls produced by manatees decreased over the course of several days. The proportion of tonal calls decreased with hours after sunset and increased in boat presence. These results suggest manatees in this region may exhibit different diel activity patterns which appear to be influenced by the characteristics of the environment. These findings can support ongoing conservation and management efforts to safeguard species in Belize.


Subject(s)
Trichechus manatus , Trichechus , Animals , Belize , Ecosystem , Acoustics
2.
Front Physiol ; 14: 1162807, 2023.
Article in English | MEDLINE | ID: mdl-37408588

ABSTRACT

The distribution of octopuses within the Octopus vulgaris species complex remains inadequately understood. Species determination can be complex and involves characterizing a specimen's physical features and comparing its genetic makeup to other populations. In this study, we present the first genetic confirmation of Octopus insularis (Leite and Haimovici, 2008) inhabiting the coastal waters of the Florida Keys, United States. We employed visual observations to identify species-specific body patterns of three wild-caught octopuses and used de novo genome assembly to confirm their species. All three specimens exhibited a red/white reticulated pattern on their ventral arm surface. Two specimens displayed body pattern components of deimatic display (white eye encircled by a light ring, with darkening around the eye). All visual observations were consistent with distinguishing features of O. insularis. We then compared mitochondrial subunits COI, COIII, and 16S in these specimens across all available annotated octopod sequences, including Sepia apama (Hotaling et al., 2021) as a control outgroup taxon. For species exhibiting intraspecific genomic variation, we included multiple sequences from geographically distinct populations. Laboratory specimens consistently clustered into a single taxonomic node with O. insularis. These findings confirm O. insularis presence in South Florida and suggest a more extensive northern distribution than previously assumed. Whole genome Illumina sequencing of multiple specimens enabled taxonomic identification with well-established DNA barcodes while also generating the first de novo full assembly of O. insularis. Furthermore, constructing and comparing phylogenetic trees for multiple conserved genes is essential for confirming the presence and delineation of cryptic species in the Caribbean.

3.
Zoo Biol ; 42(6): 723-729, 2023.
Article in English | MEDLINE | ID: mdl-37283165

ABSTRACT

Captive animals typically develop anticipatory behaviors, actions of increased frequency done in anticipation of an event such as feeding. Anticipatory behaviors can be an indicator of an animal's welfare. However, for rehabilitating animals that are expected to be reintroduced into the wild, these behaviors need to be extinguished to ensure successful release. Scheduled activities such as feeding occur daily and vocalizations could potentially be used to identify anticipatory behavior. Here, we tested the hypothesis that manatee calves modify their vocal production rate as a form of anticipatory behavior. Vocalizations of two Antillean manatee (Trichechus manatus manatus) calves were recorded for 10 min before, during, and after feeding sessions at Wildtracks, a manatee rehabilitation center in Belize. The number of calls were counted across recording sessions and three acoustic parameters were measured from calls including duration, frequency modulation, and center frequency. A repeated measures ANOVA comparing the number of calls across sessions indicated manatees produced significantly more calls before feeding sessions than during and after sessions. In addition, manatees increased the duration and lowered the frequency of calls before feeding sessions. This information can give further insight on ways to improve rehabilitation protocols and manage human interactions to increase the overall survival rate of rehabilitated manatees when released back into the wild.


Subject(s)
Trichechus manatus , Humans , Animals , Cattle , Animals, Zoo
4.
Sci Rep ; 13(1): 4621, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36944685

ABSTRACT

The cosmopolitan distribution of humpback whales (Megaptera novaeangliae) is largely driven by migrations between winter low-latitude breeding grounds and summer high-latitude feeding grounds. Southern Hemisphere humpback whales faced intensive exploitation during the whaling eras and recently show evidence of population recovery. Gene flow and shared song indicate overlap between the western (A) and eastern (B1, B2) Breeding Stocks in the South Atlantic and Indian Oceans (C1). Here, we investigated photo-identification evidence of population interchange using images of individuals photographed during boat-based tourism and research in Brazil and South Africa from 1989 to 2022. Fluke images were uploaded to Happywhale, a global digital database for marine mammal identification. Six whales were recaptured between countries from 2002 to 2021 with resighting intervals ranging from 0.76 to 12.92 years. Four whales originally photographed off Abrolhos Bank, Brazil were photographed off the Western Cape, South Africa (feeding grounds for B2). Two whales originally photographed off the Western Cape were photographed off Brazil, one traveling to the Eastern Cape in the Southwestern Indian Ocean (a migration corridor for C1) before migrating westward to Brazil. These findings photographically confirm interchange of humpback whales across the South Atlantic and Indian Oceans and the importance of international collaboration to understand population boundaries.


Subject(s)
Humpback Whale , Animals , Atlantic Ocean , Seasons , Indian Ocean , Brazil
5.
Sci Rep ; 12(1): 19597, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36379989

ABSTRACT

Vocal activity and signal characteristics of mammals are driven by several factors that result in both stability and plasticity over multiple time scales. All three extant species of manatee communicate with several calls that are especially important for maintaining contact between cows and calves. Determining if calf calls differ across manatee species will provide insights into the evolution of species-specific acoustic communication traits. We investigated the interspecific differences in the vocalizations of calves of Amazonian manatees (Trichechus inunguis) and the two subspecies of the West Indian manatee (T. manatus). Vocalizations of individual calves were recorded in rehabilitation centers in Brazil, Puerto Rico, the United States, and Mexico. The acoustic structure of calls produced by manatee calves varied between species and with body size. Amazonian manatee calves produced shorter calls with multiple notes at higher frequency while West Indian calves produced modulated calls that were lower in frequency and longer in duration. Smaller West Indian calves produced frequency modulated, hill-shaped calls that flattened with an increase in body length. Our results provide evidence for divergence in the ontogeny of vocalizations across T. manatus and T. inunguis and suggest variation in body size contributed to the evolution of differences in the characteristics of their calls.


Subject(s)
Trichechus manatus , Female , Cattle , Animals , Trichechus , Species Specificity , Acoustics , Mammals , Body Size
SELECTION OF CITATIONS
SEARCH DETAIL
...